7.3 NUCLEAR REACTIONS

(Refer to pp. 312-325 in BC Science 10)

- Nuclear fission and fusion are processes that involve extremely large amounts of energy.
 - Fission: the splitting of nuclei
 - Fusion: the joining of nuclei

NUCLEAR FISSION
- Nuclear energy used to produce power comes from fission.
 - nuclear fission: the splitting of one heavy nucleus into two or more smaller nuclei, subatomic particles and energy.
 - A heavy nucleus is usually unstable, due to many positive protons pushing apart.
- When fission occurs:
 1. energy is released
 2. neutrons are released

NUCLEAR REACTIONS VS. CHEMICAL REACTIONS
- Nuclear reactions are different than chemical reactions.
 - In chemical reactions, mass is conserved, and energy changes are relatively small.
 - There are no changes to the nuclei in chemical reactions.
 - nuclear reaction: the process in an atom's nucleus changes by gaining or releasing particles or energy
In nuclear reactions, the actual nuclei of atoms changes. **protons**, **neutrons**, **electrons**, and/or **gamma rays** can be lost or gained.

small changes of mass = **huge** changes in energy.

Refer to Table 7.8 on p. 314

NUCLEAR EQUATIONS FOR INDUCED NUCLEAR REACTIONS

- Natural radioactive decay consists of the release of **alpha**, **beta** and **gamma** radiation.
- Scientists can also create nuclear reactions by **bombarding** nuclei with alpha, beta and gamma radiation.

Two ways to write the nuclear equation for induced nuclear reactions:

\[
\begin{align*}
\frac{4}{2}\text{He} + \frac{14}{7}\text{N} &\rightarrow \frac{17}{8}\text{O} + \frac{1}{1}\text{H} \\
\text{Bombarding alpha particle} &\rightarrow \text{Target nitrogen atom} & \text{Oxygen atom} &\rightarrow \text{Hydrogen atom}
\end{align*}
\]

Two ways to write the nuclear equation for induced nuclear reactions:

\[
\begin{align*}
\frac{4}{2}\alpha + \frac{14}{7}\text{N} &\rightarrow \frac{17}{8}\text{O} + \frac{1}{1}\text{p} \\
\text{proton released!} &\rightarrow \text{Or} \\
\frac{4}{2}\text{He} + \frac{14}{7}\text{N} &\rightarrow \frac{17}{8}\text{O} + \frac{1}{1}\text{H}
\end{align*}
\]

RULES FOR WRITING NUCLEAR EQUATIONS

- Same rules as for radioactive decay:
 1. The sum of the mass numbers on each side stays the same.
 2. The sum of the charges on each side of the equation stays the same.

Complete the Reading Check on p. 315
NUCLEAR FISSION OF URANIUM-235

• It is much easier to crash a neutral neutron than a positive proton into a nucleus to release energy.

 • Nuclear fission of uranium-235 is the main nuclear reaction in both nuclear fission reactors and weapons.

 • A neutron, \(^{0}n \), crashes into an atom of stable uranium-235 to create unstable uranium-236, which then undergoes radioactive decay.

 • After several steps, atoms of krypton and barium are formed, along with the release of 3 neutrons and huge quantities of energy.

\[^{0}n + ^{235}\text{U} \rightarrow ^{92}\text{Kr} + ^{141}\text{Ba} + 3 ^{0}n + \text{energy} \]

Complete the Practice Problems on p. 317

CHAIN REACTIONS

• chain reaction: an ongoing process in which one fission reaction initiates the next reaction.

• Once the nuclear fission reaction has started, it can keep going.

 • The neutrons released in the induced reaction can then trigger more reactions on other uranium-235 atoms.

 • This chain reaction can quickly get out of control.

 • some materials can absorb some neutrons can help to control the chain reaction.

 • Nuclear reactors have complex systems to ensure the chain reaction stays at safe levels.

 • An uncontrolled chain reaction can result in a violent nuclear explosion.
CANDU REACTORS AND HAZARDOUS WASTES

Canada’s nuclear research into the **safe** use of nuclear reactions has resulted in the creation of CANDU reactors.
- CANDU reactors are found in various countries around the world and use nuclear fission of **uranium-235**.
- Hazardous wastes produced by nuclear reactions are problematic.
 - Some waste products can be **re-used**, some must be stored away from living things and is buried **underground** or stored in **concrete**.
 - It will take 20 half-lives (20,000 of years) before the material is safe.

NUCLEAR FUSION

- **nuclear fusion**: a process in which **two low mass nuclei** join together to make a **more massive nucleus**.
 - In the core of the **sun** and other **stars**, two **hydrogen** nuclei join under tremendous heat and pressure to form a helium nucleus.
 - When the helium atom is formed, huge amounts of energy are released.
 \[
 _2^1H + _3^1H \rightarrow _4^2He + _0^1n + \text{energy}
 \]
 - Scientists **cannot** yet find a safe, manageable method to harness the energy of nuclear fusion.
- Refer to Table 7.11 on p. 321

Complete p. 325 #1, 2, 6-10